skip to main content


Search for: All records

Creators/Authors contains: "Tauxe, L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Feinberg, Joshua (Ed.)
    Twenty-two sites, subjected to an IZZI-modified Thellier-Thellier experiment and strict selection criteria, recover a paleomagnetic axial dipole moment (PADM) of 62.24$\pm$ 30.6 ZAm$^2$ in Northern Israel over the Pleistocene (0.012 - 2.58 Ma). Pleistocene data from comparable studies from Antarctica, Iceland, and Hawaii, re-analyzed using the same criteria and age range, show that the Northern Israeli data are on average slightly higher than those from Iceland (PADM = 53.8 $\pm$ 23 ZAm$^2$, n = 51 sites) and even higher than the Antarctica average %\cite{asefaw21} (PADM = 40.3 $\pm$ 17.3 ZAm$^2$, n = 42 sites). Also, the data from the Hawaiian drill core, HSDP2, spanning the last half million years (PADM = 76.7 $\pm$ 21.3 ZAm$^2$, n = 59 sites) are higher than those from Northern Israel. These results, when compared to Pleistocene results filtered from the PINT database (www.pintdb.org) suggest that data from the Northern hemisphere mid-latitudes are on average higher than those from the southern hemisphere and than those from latitudes higher than 60$^{\circ}$N. The weaker intensities found at high (northern and southern) latitudes therefore, cannot be attributed to inadequate spatio-temporal sampling of a time-varying dipole moment or low quality data. The high fields in mid-latitude Northern hemisphere could result from long-lived non-axial dipole terms in the geomagnetic field with episodes of high field intensities occurring at different times in different longitudes. This hypothesis is supported by an asymmetry predicted from the Holocene, 100 kyr, and five million year time-averaged geomagnetic field models. 
    more » « less
  2. Abstract

    Absolute paleointensity (API) of the geomagnetic field can be estimated from volcanic rocks by comparing the natural remanent magnetization (NRM) to a laboratory‐induced thermoremanent magnetization (Lab‐TRM). Plots of NRM unblocking versus Lab‐TRM blocking from API experiments often exhibit nonideal curvature, which can result in biased estimates. Previous work showed that curvature can increase with age; however, selection criteria designed to eliminate such behavior yielded accurate estimates for two‐year‐aged specimens (70.3 ± 3.8 μT;N = 96 specimens out of 120 experiments). API can also be estimated in coercivity space. Here, we use the Tsunakawa‐Shaw (TS) method applied to 20 specimens aged in the laboratory field of 70.0 μT for 4 years, after acquisition of zero‐age (fresh) Lab‐TRM in the same field. Selection criteria for the TS experiment also yielded accurate results (68.5 ± 4.5 μT;N = 17 specimens). In thermal API experiments, curvature is related to internal structure with more single domain‐like behavior having the least curvature. Here we show that the fraction of anhysteretic remanent magnetization demagnetized by low‐temperature treatment was larger for samples with larger thermal curvatures suggesting a magnetocrystalline anisotropy source. We also tested experimental remedies that have been proposed to improve the accuracy of paleointensity estimates. In particular, we test the efficacy of the multi‐specimen approach and a strategy pretreating specimens with low field alternating field demagnetization prior to the paleointensity experiment. Neither yielded accurate results.

     
    more » « less
  3. PmagPy Online: Jupyter Notebooks, the PmagPy Software Package and the Magnetics Information Consortium (MagIC) Database Lisa Tauxe$^1$, Rupert Minnett$^2$, Nick Jarboe$^1$, Catherine Constable$^1$, Anthony Koppers$^2$, Lori Jonestrask$^1$, Nick Swanson-Hysell$^3$ $^1$Scripps Institution of Oceanography, United States of America; $^2$ Oregon State University; $^3$ University of California, Berkely; ltauxe@ucsd.edu The Magnetics Information Consortium (MagIC), hosted at http://earthref.org/MagIC is a database that serves as a Findable, Accessible, Interoperable, Reusable (FAIR) archive for paleomagnetic and rock magnetic data. It has a flexible, comprehensive data model that can accomodate most kinds of paleomagnetic data. The PmagPy software package is a cross-platform and open-source set of tools written in Python for the analysis of paleomagnetic data that serves as one interface to MagIC, accommodating various levels of user expertise. It is available through github.com/PmagPy. Because PmagPy requires installation of Python, several non-standard Python modules, and the PmagPy software package, there is a speed bump for many practitioners on beginning to use the software. In order to make the software and MagIC more accessible to the broad spectrum of scientists interested in paleo and rock magnetism, we have prepared a set of Jupyter notebooks, hosted on jupyterhub.earthref.org which serve a set of purposes. 1) There is a complete course in Python for Earth Scientists, 2) a set of notebooks that introduce PmagPy (pulling the software package from the github repository) and illustrate how it can be used to create data products and figures for typical papers, and 3) show how to prepare data from the laboratory to upload into the MagIC database. The latter will satisfy expectations from NSF for data archiving and for example the AGU publication data archiving requirements. Getting started To use the PmagPy notebooks online, go to website at https://jupyterhub.earthref.org/. Create an Earthref account using your ORCID and log on. [This allows you to keep files in a private work space.] Open the PmagPy Online - Setup notebook and execute the two cells. Then click on File = > Open and click on the PmagPy_Online folder. Open the PmagPy_online notebook and work through the examples. There are other notebooks that are useful for the working paleomagnetist. Alternatively, you can install Python and the PmagPy software package on your computer (see https://earthref.org/PmagPy/cookbook for instructions). Follow the instructions for "Full PmagPy install and update" through section 1.4 (Quickstart with PmagPy notebooks). This notebook is in the collection of PmagPy notebooks. Overview of MagIC The Magnetics Information Consortium (MagIC), hosted at http://earthref.org/MagIC is a database that serves as a Findable, Accessible, Interoperable, Reusable (FAIR) archive for paleomagnetic and rock magnetic data. Its datamodel is fully described here: https://www2.earthref.org/MagIC/data-models/3.0. Each contribution is associated with a publication via the DOI. There are nine data tables: contribution: metadata of the associated publication. locations: metadata for locations, which are groups of sites (e.g., stratigraphic section, region, etc.) sites: metadata and derived data at the site level (units with a common expectation) samples: metadata and derived data at the sample level. specimens: metadata and derived data at the specimen level. criteria: criteria by which data are deemed acceptable ages: ages and metadata for sites/samples/specimens images: associated images and plots. Overview of PmagPy The functionality of PmagPy is demonstrated within notebooks in the PmagPy repository: PmagPy_online.ipynb: serves as an introdution to PmagPy and MagIC (this conference). It highlights the link between PmagPy and the Findable Accessible Interoperable Reusabe (FAIR) database maintained by the Magnetics Information Consortium (MagIC) at https://earthref.org/MagIC. Other notebooks of interest are: PmagPy_calculations.ipynb: demonstrates many of the PmagPy calculation functions such as those that rotate directions, return statistical parameters, and simulate data from specified distributions. PmagPy_plots_analysis.ipynb: demonstrates PmagPy functions that can be used to visual data as well as those that conduct statistical tests that have associated visualizations. PmagPy_MagIC.ipynb: demonstrates how PmagPy can be used to read and write data to and from the MagIC database format including conversion from many individual lab measurement file formats. Please see also our YouTube channel with more presentations from the 2020 MagIC workshop here: https://www.youtube.com/playlist?list=PLirL2unikKCgUkHQ3m8nT29tMCJNBj4kj 
    more » « less
  4. null (Ed.)
  5. Abstract

    Twenty‐two sites, subjected to an IZZI‐modified Thellier‐Thellier experiment and strict selection criteria, recover a paleomagnetic axial dipole moment (PADM) of 62.2 ± 30.6 ZAm2in Northern Israel over the Pleistocene (0.012–2.58 Ma). Pleistocene data from comparable studies from Antarctica, Iceland, and Hawaii, re‐analyzed using the same criteria and age range, show that the Northern Israeli data are on average slightly higher than those from Iceland (PADM = 53.8 ± 23 ZAm2,n = 51 sites) and even higher than the Antarctica average (PADM = 40.3 ± 17.3 ZAm2,n = 42 sites). Also, the data from the Hawaiian drill core, HSDP2, spanning the last half million years (PADM = 76.7 ± 21.3 ZAm2,n = 59 sites) are higher than those from Northern Israel. These results, when compared to Pleistocene results filtered from the PINT database (www.pintdb.org) suggest that data from the Northern hemisphere mid‐latitudes are on average higher than those from the southern hemisphere and than those from latitudes higher than 60°N. The weaker intensities found at high (northern and southern) latitudes therefore, cannot be attributed to inadequate spatiotemporal sampling of a time‐varying dipole moment or low quality data. The high fields in mid‐latitude northern hemisphere could result from long‐lived non‐axial dipole terms in the geomagnetic field with episodes of high field intensities occurring at different times in different longitudes. This hypothesis is supported by an asymmetry predicted from the Holocene, 100 kyr, and 5 million year time‐averaged geomagnetic field models.

     
    more » « less